Feature-incorporated alignment based ligand-binding residue prediction for carbohydrate-binding modules
نویسندگان
چکیده
MOTIVATION Carbohydrate-binding modules (CBMs) share similar secondary and tertiary topology, but their primary sequence identity is low. Computational identification of ligand-binding residues allows biologists to better understand the protein-carbohydrate binding mechanism. In general, functional characterization can be alternatively solved by alignment-based manners. As alignment accuracy based on conventional methods is often sensitive to sequence identity, low sequence identity among query sequences makes it difficult to precisely locate small portions of relevant features. Therefore, we propose a feature-incorporated alignment (FIA) to flexibly align conserved signatures in CBMs. Then, an FIA-based target-template prediction model was further implemented to identify functional ligand-binding residues. RESULTS Arabidopsis thaliana CBM45 and CBM53 were used to validate the FIA-based prediction model. The predicted ligand-binding residues residing on the surface in the hypothetical structures were verified to be ligand-binding residues. In the absence of 3D structural information, FIA demonstrated significant improvement in the estimation of sequence similarity and identity for a total of 808 sequences from 11 different CBM families as compared with six leading tools by Friedman rank test.
منابع مشابه
Hydrophilic Aromatic Residue and in silico Structure for Carbohydrate Binding Module
Carbohydrate binding modules (CBMs) are found in polysaccharide-targeting enzymes and increase catalytic efficiency. Because only a relatively small number of CBM structures have been solved, computational modeling represents an alternative approach in conjunction with experimental assessment of CBM functionality and ligand-binding properties. An accurate target-template sequence alignment is t...
متن کاملThe structural basis for the ligand specificity of family 2 carbohydrate-binding modules.
The interactions of proteins with polysaccharides play a key role in the microbial hydrolysis of cellulose and xylan, the most abundant organic molecules in the biosphere, and are thus pivotal to the recycling of photosynthetically fixed carbon. Enzymes that attack these recalcitrant polymers have a modular structure comprising catalytic modules and non-catalytic carbohydrate-binding modules (C...
متن کاملPrediction of protein functional residues from sequence by probability density estimation
MOTIVATION The prediction of ligand-binding residues or catalytically active residues of a protein may give important hints that can guide further genetic or biochemical studies. Existing sequence-based prediction methods mostly rank residue positions by evolutionary conservation calculated from a multiple sequence alignment of homologs. A problem hampering more wide-spread application of these...
متن کاملfirestar—prediction of functionally important residues using structural templates and alignment reliability
UNLABELLED Here we present firestar, an expert system for predicting ligand-binding residues in protein structures. The server provides a method for extrapolating from the large inventory of functionally important residues organized in the FireDB database and adds information about the local conservation of potential-binding residues. The interface allows users to make queries by protein sequen...
متن کاملInnovations: the gas is greener.
Background: Protein-Carbohydrate interactions are crucial in many biological processes with implications to drug targeting and gene expression. Nature of protein-carbohydrate interactions may be studied at individual residue level by analyzing local sequence and structure environments in binding regions in comparison to non-binding regions, which provide an inherent control for such analyses. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 26 8 شماره
صفحات -
تاریخ انتشار 2010